

Fig. 1. Absorption constant K and its change ΔK under [001] stress versus photon energy for NaCl:Cu*

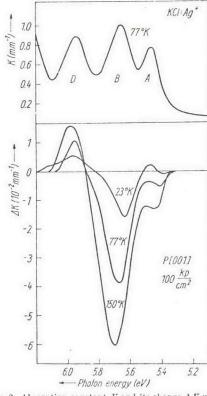
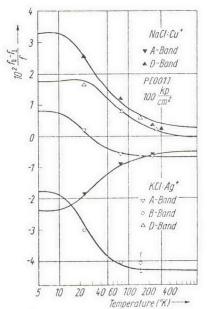



Fig. 2. Absorption constant K and its change ΔK under [001] stress versus photon energy for KCl:Ag*

1

1 1

11

the formation of aggregate centres the samples were held for a few minutes at about 100 °K below the melting point and then quenched to room temperature.

The upper part of Fig. 1 shows the UV absorption of NaCl:Cu⁺ at 77 °K. The main band at 4.8 eV, called the D-band, corresponds to a transition $\Gamma_1^+ \to \Gamma_5^-$. In the small shoulder at 4.5 eV, called the A-band, the two transitions $\Gamma_1^+ \to \Gamma_3^+$ and $\Gamma_1^+ \to \Gamma_5^-$, or briefly $\Gamma_1^+ \to \Gamma_3^+$, Γ_5^+ , contribute to the absorption. Γ_3^\pm denotes the transformation properties of the unperturbated electronic states of the defect under the elements of the point group O_h . When uniaxial stress

Fig. 3. Change of oscillator strength $|f_{||}=f_{\perp}$ normalized to the oscillator strength f plotted versus temperature